PINE LIBRARY

SignalProcessingClusteringKMeans

4 390
Library "SignalProcessingClusteringKMeans"
K-Means Clustering Method.

nearest(point_x, point_y, centers_x, centers_y) finds the nearest center to a point and returns its distance and center index.
Parameters:
  • point_x: float, x coordinate of point.
  • point_y: float, y coordinate of point.
  • centers_x: float array, x coordinates of cluster centers.
  • centers_y: float array, y coordinates of cluster centers.
    @ returns tuple of int, float.



bisection_search(samples, value) Bissection Search
Parameters:
  • samples: float array, weights to compare.
  • value: float array, weights to compare.

Returns: int.

label_points(points_x, points_y, centers_x, centers_y) labels each point index with cluster index and distance.
Parameters:
  • points_x: float array, x coordinates of points.
  • points_y: float array, y coordinates of points.
  • centers_x: float array, x coordinates of points.
  • centers_y: float array, y coordinates of points.

Returns: tuple with int array, float array.

kpp(points_x, points_y, n_clusters) K-Means++ Clustering adapted from Andy Allinger.
Parameters:
  • points_x: float array, x coordinates of the points.
  • points_y: float array, y coordinates of the points.
  • n_clusters: int, number of clusters.

Returns: tuple with 2 arrays, float array, int array.

כתב ויתור

המידע והפרסומים אינם אמורים להיות, ואינם מהווים, עצות פיננסיות, השקעות, מסחר או סוגים אחרים של עצות או המלצות שסופקו או מאושרים על ידי TradingView. קרא עוד בתנאים וההגבלות.