forward(pi, a, b, obs) Computes forward probabilities for state `X` up to observation at time `k`, is defined as the probability of observing sequence of observations `e_1 ... e_k` and that the state at time `k` is `X`. Parameters: pi (float[]): Initial probabilities. a (matrix<float>): Transmissions, hidden transition matrix a or alpha = transition probability matrix of changing states given a state matrix is size (M x M) where M is number of states. b (matrix<float>): Emissions, matrix of observation probabilities b or beta = observation probabilities. Given state matrix is size (M x O) where M is number of states and O is number of different possible observations. obs (int[]): List with actual state observation data. Returns: - `matrix<float> _alpha`: Forward probabilities. The probabilities are given on a logarithmic scale (natural logarithm). The first dimension refers to the state and the second dimension to time.
forward(pi, a, b, obs, scaling) Computes forward probabilities for state `X` up to observation at time `k`, is defined as the probability of observing sequence of observations `e_1 ... e_k` and that the state at time `k` is `X`. Parameters: pi (float[]): Initial probabilities. a (matrix<float>): Transmissions, hidden transition matrix a or alpha = transition probability matrix of changing states given a state matrix is size (M x M) where M is number of states. b (matrix<float>): Emissions, matrix of observation probabilities b or beta = observation probabilities. Given state matrix is size (M x O) where M is number of states and O is number of different possible observations. obs (int[]): List with actual state observation data. scaling (bool): Normalize `alpha` scale. Returns: - #### Tuple with: > - `matrix<float> _alpha`: Forward probabilities. The probabilities are given on a logarithmic scale (natural logarithm). The first dimension refers to the state and the second dimension to time. > - `array<float> _c`: Array with normalization scale.
backward(a, b, obs) Computes backward probabilities for state `X` and observation at time `k`, is defined as the probability of observing the sequence of observations `e_k+1, ... , e_n` under the condition that the state at time `k` is `X`. Parameters: a (matrix<float>): Transmissions, hidden transition matrix a or alpha = transition probability matrix of changing states given a state matrix is size (M x M) where M is number of states b (matrix<float>): Emissions, matrix of observation probabilities b or beta = observation probabilities. given state matrix is size (M x O) where M is number of states and O is number of different possible observations obs (int[]): Array with actual state observation data. Returns: - `matrix<float> _beta`: Backward probabilities. The probabilities are given on a logarithmic scale (natural logarithm). The first dimension refers to the state and the second dimension to time.
backward(a, b, obs, c) Computes backward probabilities for state `X` and observation at time `k`, is defined as the probability of observing the sequence of observations `e_k+1, ... , e_n` under the condition that the state at time `k` is `X`. Parameters: a (matrix<float>): Transmissions, hidden transition matrix a or alpha = transition probability matrix of changing states given a state matrix is size (M x M) where M is number of states b (matrix<float>): Emissions, matrix of observation probabilities b or beta = observation probabilities. given state matrix is size (M x O) where M is number of states and O is number of different possible observations obs (int[]): Array with actual state observation data. c (float[]): Array with Normalization scaling coefficients. Returns: - `matrix<float> _beta`: Backward probabilities. The probabilities are given on a logarithmic scale (natural logarithm). The first dimension refers to the state and the second dimension to time.
baumwelch(observations, nstates) **(Random Initialization)** Baum–Welch algorithm is a special case of the expectation–maximization algorithm used to find the unknown parameters of a hidden Markov model (HMM). It makes use of the forward-backward algorithm to compute the statistics for the expectation step. Parameters: observations (int[]): List of observed states. nstates (int) Returns: - #### Tuple with: > - `array<float> _pi`: Initial probability distribution. > - `matrix<float> _a`: Transition probability matrix. > - `matrix<float> _b`: Emission probability matrix. --- requires: `import RicardoSantos/WIPTensor/2 as Tensor`
baumwelch(observations, pi, a, b) Baum–Welch algorithm is a special case of the expectation–maximization algorithm used to find the unknown parameters of a hidden Markov model (HMM). It makes use of the forward-backward algorithm to compute the statistics for the expectation step. Parameters: observations (int[]): List of observed states. pi (float[]): Initial probaility distribution. a (matrix<float>): Transmissions, hidden transition matrix a or alpha = transition probability matrix of changing states given a state matrix is size (M x M) where M is number of states b (matrix<float>): Emissions, matrix of observation probabilities b or beta = observation probabilities. given state matrix is size (M x O) where M is number of states and O is number of different possible observations Returns: - #### Tuple with: > - `array<float> _pi`: Initial probability distribution. > - `matrix<float> _a`: Transition probability matrix. > - `matrix<float> _b`: Emission probability matrix. --- requires: `import RicardoSantos/WIPTensor/2 as Tensor`
הערות שחרור
v2 minor update.
הערות שחרור
Fix logger version.
הערות שחרור
v4 - Added error checking for some errors.
הערות שחרור
v5 - Improved calculation by merging some of the loops, where possible.
ברוח TradingView אמיתית, המחבר פרסם קוד Pine זה כספריית קוד פתוח כדי שמתכנתי Pine אחרים מהקהילה שלנו יוכלו לעשות בו שימוש חוזר. כל הכבוד למחבר! אתה יכול להשתמש בספרייה זו באופן פרטי או בפרסומים אחרים בקוד פתוח, אך שימוש חוזר בקוד זה בפרסום כפוף לכללי הבית.
המידע והפרסומים אינם אמורים להיות, ואינם מהווים, עצות פיננסיות, השקעות, מסחר או סוגים אחרים של עצות או המלצות שסופקו או מאושרים על ידי TradingView. קרא עוד בתנאים וההגבלות.