PINE LIBRARY

FunctionSMCMC

מעודכן
Library "FunctionSMCMC"
Methods to implement Markov Chain Monte Carlo Simulation (MCMC)

markov_chain(weights, actions, target_path, position, last_value) a basic implementation of the markov chain algorithm
  Parameters:
    weights: float array, weights of the Markov Chain.
    actions: float array, actions of the Markov Chain.
    target_path: float array, target path array.
    position: int, index of the path.
    last_value: float, base value to increment.
  Returns: void, updates target array

mcmc(weights, actions, start_value, n_iterations) uses a monte carlo algorithm to simulate a markov chain at each step.
  Parameters:
    weights: float array, weights of the Markov Chain.
    actions: float array, actions of the Markov Chain.
    start_value: float, base value to start simulation.
    n_iterations: integer, number of iterations to run.
  Returns: float array with path.
הערות שחרור
v2
outsourced the probability distribution sample selection to a external library:
-
FunctionProbabilityDistributionSampling

arraysdecisionmarkovmarkovchainMATHMCMONTECARLOpathprobabilityrandom

ספריית Pine

ברוח TradingView אמיתית, המחבר פרסם קוד Pine זה כספריית קוד פתוח כדי שמתכנתי Pine אחרים מהקהילה שלנו יוכלו לעשות בו שימוש חוזר. כל הכבוד למחבר! אתה יכול להשתמש בספרייה זו באופן פרטי או בפרסומים אחרים בקוד פתוח, אך שימוש חוזר בקוד זה בפרסום כפוף לכללי הבית.

כתב ויתור