PINE LIBRARY

FunctionMatrixCovariance

Library "FunctionMatrixCovariance"
In probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of a given random vector.
Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions. As an example, the variation in a collection of random points in two-dimensional space cannot be characterized fully by a single number, nor would the variances in the `x` and `y` directions contain all of the necessary information; a `2 × 2` matrix would be necessary to fully characterize the two-dimensional variation.
Any covariance matrix is symmetric and positive semi-definite and its main diagonal contains variances (i.e., the covariance of each element with itself).
The covariance matrix of a random vector `X` is typically denoted by `Kxx`, `Σ` or `S`.
~wikipedia.

method cov(M, bias)
  Estimate Covariance matrix with provided data.
  Namespace types: matrix<float>
  Parameters:
    M (matrix<float>): `matrix<float>` Matrix with vectors in column order.
    bias (bool)
  Returns: Covariance matrix of provided vectors.

---
en.wikipedia.org/wiki/Covariance_matrix
numpy.org/doc/stable/reference/generated/numpy.cov.html
arrayscovariancefunctionMATHmatrixprobabilitystatisticsvariance

ספריית Pine

ברוח TradingView אמיתית, המחבר פרסם קוד Pine זה כספריית קוד פתוח כדי שמתכנתי Pine אחרים מהקהילה שלנו יוכלו לעשות בו שימוש חוזר. כל הכבוד למחבר! אתה יכול להשתמש בספרייה זו באופן פרטי או בפרסומים אחרים בקוד פתוח, אך שימוש חוזר בקוד זה בפרסום כפוף לכללי הבית.

כתב ויתור