PINE LIBRARY

MLActivationFunctions

מעודכן
Library "MLActivationFunctions"
Activation functions for Neural networks.

binary_step(value) Basic threshold output classifier to activate/deactivate neuron.
  Parameters:
    value: float, value to process.
  Returns: float

linear(value) Input is the same as output.
  Parameters:
    value: float, value to process.
  Returns: float

sigmoid(value) Sigmoid or logistic function.
  Parameters:
    value: float, value to process.
  Returns: float

sigmoid_derivative(value) Derivative of sigmoid function.
  Parameters:
    value: float, value to process.
  Returns: float

tanh(value) Hyperbolic tangent function.
  Parameters:
    value: float, value to process.
  Returns: float

tanh_derivative(value) Hyperbolic tangent function derivative.
  Parameters:
    value: float, value to process.
  Returns: float

relu(value) Rectified linear unit (RELU) function.
  Parameters:
    value: float, value to process.
  Returns: float

relu_derivative(value) RELU function derivative.
  Parameters:
    value: float, value to process.
  Returns: float

leaky_relu(value) Leaky RELU function.
  Parameters:
    value: float, value to process.
  Returns: float

leaky_relu_derivative(value) Leaky RELU function derivative.
  Parameters:
    value: float, value to process.
  Returns: float

relu6(value) RELU-6 function.
  Parameters:
    value: float, value to process.
  Returns: float

softmax(value) Softmax function.
  Parameters:
    value: float array, values to process.
  Returns: float

softplus(value) Softplus function.
  Parameters:
    value: float, value to process.
  Returns: float

softsign(value) Softsign function.
  Parameters:
    value: float, value to process.
  Returns: float

elu(value, alpha) Exponential Linear Unit (ELU) function.
  Parameters:
    value: float, value to process.
    alpha: float, default=1.0, predefined constant, controls the value to which an ELU saturates for negative net inputs. .
  Returns: float

selu(value, alpha, scale) Scaled Exponential Linear Unit (SELU) function.
  Parameters:
    value: float, value to process.
    alpha: float, default=1.67326324, predefined constant, controls the value to which an SELU saturates for negative net inputs. .
    scale: float, default=1.05070098, predefined constant.
  Returns: float

exponential(value) Pointer to math.exp() function.
  Parameters:
    value: float, value to process.
  Returns: float

function(name, value, alpha, scale) Activation function.
  Parameters:
    name: string, name of activation function.
    value: float, value to process.
    alpha: float, default=na, if required.
    scale: float, default=na, if required.
  Returns: float

derivative(name, value, alpha, scale) Derivative Activation function.
  Parameters:
    name: string, name of activation function.
    value: float, value to process.
    alpha: float, default=na, if required.
    scale: float, default=na, if required.
  Returns: float
הערות שחרור
v2

Added:
softmax_derivative(value) Softmax derivative function.
  Parameters:
    value: float array, values to process.
  Returns: float
activationAIarraysartificial_intelligencefunctionmachinelearningmlneuralnetworkstatistics

ספריית Pine

ברוח TradingView אמיתית, המחבר פרסם קוד Pine זה כספריית קוד פתוח כדי שמתכנתי Pine אחרים מהקהילה שלנו יוכלו לעשות בו שימוש חוזר. כל הכבוד למחבר! אתה יכול להשתמש בספרייה זו באופן פרטי או בפרסומים אחרים בקוד פתוח, אך שימוש חוזר בקוד זה בפרסום כפוף לכללי הבית.

כתב ויתור