OPEN-SOURCE SCRIPT
チャットGPT

import yfinance as yf
import pandas as pd
import requests
from bs4 import BeautifulSoup
# 株たんのスクリーニング結果URL(例:200日線以下)
url = "kabutan.jp/warning/?mode=3_1"
r = requests.get(url)
soup = BeautifulSoup(r.text, "html.parser")
# 銘柄コードと企業名を抽出
stocks = []
for link in soup.select("td a[href*='/stock/?code=']"):
code = link['href'].split('=')[-1]
name = link.text.strip()
if code.isdigit():
stocks.append({"code": code, "name": name})
results = []
for stock in stocks[:10]: # ←テスト用に10銘柄まで
ticker = f"{stock['code']}.T"
df = yf.download(ticker, period="1y", interval="1d")
# EMA200
df["EMA200"] = df["Close"].ewm(span=200, adjust=False).mean()
below_ema200 = df["Close"].iloc[-1] < df["EMA200"].iloc[-1]
# 株たんの個別ページからPER・成長率を取得
stock_url = f"kabutan.jp/stock/?code={stock['code']}"
res = requests.get(stock_url)
s = BeautifulSoup(res.text, "html.parser")
try:
per = s.find(text="PER").find_next("td").text
growth = s.find(text="売上高増減率").find_next("td").text
except:
per, growth = "N/A", "N/A"
results.append({
"銘柄コード": stock['code'],
"企業名": stock['name'],
"200EMA以下": below_ema200,
"PER": per,
"売上成長率": growth
})
# 結果をCSV出力
df_result = pd.DataFrame(results)
df_result.to_csv("割安EMA200以下銘柄.csv", index=False, encoding="utf-8-sig")
print(df_result)
import pandas as pd
import requests
from bs4 import BeautifulSoup
# 株たんのスクリーニング結果URL(例:200日線以下)
url = "kabutan.jp/warning/?mode=3_1"
r = requests.get(url)
soup = BeautifulSoup(r.text, "html.parser")
# 銘柄コードと企業名を抽出
stocks = []
for link in soup.select("td a[href*='/stock/?code=']"):
code = link['href'].split('=')[-1]
name = link.text.strip()
if code.isdigit():
stocks.append({"code": code, "name": name})
results = []
for stock in stocks[:10]: # ←テスト用に10銘柄まで
ticker = f"{stock['code']}.T"
df = yf.download(ticker, period="1y", interval="1d")
# EMA200
df["EMA200"] = df["Close"].ewm(span=200, adjust=False).mean()
below_ema200 = df["Close"].iloc[-1] < df["EMA200"].iloc[-1]
# 株たんの個別ページからPER・成長率を取得
stock_url = f"kabutan.jp/stock/?code={stock['code']}"
res = requests.get(stock_url)
s = BeautifulSoup(res.text, "html.parser")
try:
per = s.find(text="PER").find_next("td").text
growth = s.find(text="売上高増減率").find_next("td").text
except:
per, growth = "N/A", "N/A"
results.append({
"銘柄コード": stock['code'],
"企業名": stock['name'],
"200EMA以下": below_ema200,
"PER": per,
"売上成長率": growth
})
# 結果をCSV出力
df_result = pd.DataFrame(results)
df_result.to_csv("割安EMA200以下銘柄.csv", index=False, encoding="utf-8-sig")
print(df_result)
סקריפט קוד פתוח
ברוח האמיתית של TradingView, יוצר הסקריפט הזה הפך אותו לקוד פתוח, כך שסוחרים יוכלו לעיין בו ולאמת את פעולתו. כל הכבוד למחבר! אמנם ניתן להשתמש בו בחינם, אך זכור כי פרסום חוזר של הקוד כפוף ל־כללי הבית שלנו.
כתב ויתור
המידע והפרסומים אינם מיועדים להיות, ואינם מהווים, ייעוץ או המלצה פיננסית, השקעתית, מסחרית או מכל סוג אחר המסופקת או מאושרת על ידי TradingView. קרא עוד ב־תנאי השימוש.
סקריפט קוד פתוח
ברוח האמיתית של TradingView, יוצר הסקריפט הזה הפך אותו לקוד פתוח, כך שסוחרים יוכלו לעיין בו ולאמת את פעולתו. כל הכבוד למחבר! אמנם ניתן להשתמש בו בחינם, אך זכור כי פרסום חוזר של הקוד כפוף ל־כללי הבית שלנו.
כתב ויתור
המידע והפרסומים אינם מיועדים להיות, ואינם מהווים, ייעוץ או המלצה פיננסית, השקעתית, מסחרית או מכל סוג אחר המסופקת או מאושרת על ידי TradingView. קרא עוד ב־תנאי השימוש.