OPEN-SOURCE SCRIPT
チャットGPT

import yfinance as yf
import pandas as pd
import requests
from bs4 import BeautifulSoup
# 株たんのスクリーニング結果URL(例:200日線以下)
url = "kabutan.jp/warning/?mode=3_1"
r = requests.get(url)
soup = BeautifulSoup(r.text, "html.parser")
# 銘柄コードと企業名を抽出
stocks = []
for link in soup.select("td a[href*='/stock/?code=']"):
code = link['href'].split('=')[-1]
name = link.text.strip()
if code.isdigit():
stocks.append({"code": code, "name": name})
results = []
for stock in stocks[:10]: # ←テスト用に10銘柄まで
ticker = f"{stock['code']}.T"
df = yf.download(ticker, period="1y", interval="1d")
# EMA200
df["EMA200"] = df["Close"].ewm(span=200, adjust=False).mean()
below_ema200 = df["Close"].iloc[-1] < df["EMA200"].iloc[-1]
# 株たんの個別ページからPER・成長率を取得
stock_url = f"kabutan.jp/stock/?code={stock['code']}"
res = requests.get(stock_url)
s = BeautifulSoup(res.text, "html.parser")
try:
per = s.find(text="PER").find_next("td").text
growth = s.find(text="売上高増減率").find_next("td").text
except:
per, growth = "N/A", "N/A"
results.append({
"銘柄コード": stock['code'],
"企業名": stock['name'],
"200EMA以下": below_ema200,
"PER": per,
"売上成長率": growth
})
# 結果をCSV出力
df_result = pd.DataFrame(results)
df_result.to_csv("割安EMA200以下銘柄.csv", index=False, encoding="utf-8-sig")
print(df_result)
import pandas as pd
import requests
from bs4 import BeautifulSoup
# 株たんのスクリーニング結果URL(例:200日線以下)
url = "kabutan.jp/warning/?mode=3_1"
r = requests.get(url)
soup = BeautifulSoup(r.text, "html.parser")
# 銘柄コードと企業名を抽出
stocks = []
for link in soup.select("td a[href*='/stock/?code=']"):
code = link['href'].split('=')[-1]
name = link.text.strip()
if code.isdigit():
stocks.append({"code": code, "name": name})
results = []
for stock in stocks[:10]: # ←テスト用に10銘柄まで
ticker = f"{stock['code']}.T"
df = yf.download(ticker, period="1y", interval="1d")
# EMA200
df["EMA200"] = df["Close"].ewm(span=200, adjust=False).mean()
below_ema200 = df["Close"].iloc[-1] < df["EMA200"].iloc[-1]
# 株たんの個別ページからPER・成長率を取得
stock_url = f"kabutan.jp/stock/?code={stock['code']}"
res = requests.get(stock_url)
s = BeautifulSoup(res.text, "html.parser")
try:
per = s.find(text="PER").find_next("td").text
growth = s.find(text="売上高増減率").find_next("td").text
except:
per, growth = "N/A", "N/A"
results.append({
"銘柄コード": stock['code'],
"企業名": stock['name'],
"200EMA以下": below_ema200,
"PER": per,
"売上成長率": growth
})
# 結果をCSV出力
df_result = pd.DataFrame(results)
df_result.to_csv("割安EMA200以下銘柄.csv", index=False, encoding="utf-8-sig")
print(df_result)
סקריפט קוד פתוח
ברוח TradingView אמיתית, היוצר של הסקריפט הזה הפך אותו לקוד פתוח, כך שסוחרים יכולים לבדוק ולאמת את הפונקציונליות שלו. כל הכבוד למחבר! למרות שאתה יכול להשתמש בו בחינם, זכור שפרסום מחדש של הקוד כפוף לכללי הבית שלנו.
כתב ויתור
המידע והפרסומים אינם אמורים להיות, ואינם מהווים, עצות פיננסיות, השקעות, מסחר או סוגים אחרים של עצות או המלצות שסופקו או מאושרים על ידי TradingView. קרא עוד בתנאים וההגבלות.
סקריפט קוד פתוח
ברוח TradingView אמיתית, היוצר של הסקריפט הזה הפך אותו לקוד פתוח, כך שסוחרים יכולים לבדוק ולאמת את הפונקציונליות שלו. כל הכבוד למחבר! למרות שאתה יכול להשתמש בו בחינם, זכור שפרסום מחדש של הקוד כפוף לכללי הבית שלנו.
כתב ויתור
המידע והפרסומים אינם אמורים להיות, ואינם מהווים, עצות פיננסיות, השקעות, מסחר או סוגים אחרים של עצות או המלצות שסופקו או מאושרים על ידי TradingView. קרא עוד בתנאים וההגבלות.