PINE LIBRARY

lib_kernel

Library "lib_kernel"
Library "lib_kernel"

This is a tool / library for developers, that contains several common and adapted kernel functions as well as a kernel regression function and enum to easily select and embed a list into the settings dialog.

How to Choose and Modify Kernels in Practice
  • Compact Support Kernels (e.g., Epanechnikov, Triangular): Use for localized smoothing and emphasizing nearby data.
  • Oscillatory Kernels (e.g., Wave, Cosine): Ideal for detecting periodic patterns or mean-reverting behavior.
  • Smooth Tapering Kernels (e.g., Gaussian, Logistic): Use for smoothing long-term trends or identifying global price behavior.


kernel_Epanechnikov(u)
  Parameters:
    u (float)

kernel_Epanechnikov_alt(u, sensitivity)
  Parameters:
    u (float)
    sensitivity (float)

kernel_Triangular(u)
  Parameters:
    u (float)

kernel_Triangular_alt(u, sensitivity)
  Parameters:
    u (float)
    sensitivity (float)

kernel_Rectangular(u)
  Parameters:
    u (float)

kernel_Uniform(u)
  Parameters:
    u (float)

kernel_Uniform_alt(u, sensitivity)
  Parameters:
    u (float)
    sensitivity (float)

kernel_Logistic(u)
  Parameters:
    u (float)

kernel_Logistic_alt(u)
  Parameters:
    u (float)

kernel_Logistic_alt2(u, sigmoid_steepness)
  Parameters:
    u (float)
    sigmoid_steepness (float)

kernel_Gaussian(u)
  Parameters:
    u (float)

kernel_Gaussian_alt(u, sensitivity)
  Parameters:
    u (float)
    sensitivity (float)

kernel_Silverman(u)
  Parameters:
    u (float)

kernel_Quartic(u)
  Parameters:
    u (float)

kernel_Quartic_alt(u, sensitivity)
  Parameters:
    u (float)
    sensitivity (float)

kernel_Biweight(u)
  Parameters:
    u (float)

kernel_Triweight(u)
  Parameters:
    u (float)

kernel_Sinc(u)
  Parameters:
    u (float)

kernel_Wave(u)
  Parameters:
    u (float)

kernel_Wave_alt(u)
  Parameters:
    u (float)

kernel_Cosine(u)
  Parameters:
    u (float)

kernel_Cosine_alt(u, sensitivity)
  Parameters:
    u (float)
    sensitivity (float)

kernel(u, select, alt_modificator)
  wrapper for all standard kernel functions, see enum Kernel comments and function descriptions for usage szenarios and parameters
  Parameters:
    u (float)
    select (series Kernel)
    alt_modificator (float)

kernel_regression(src, bandwidth, kernel, exponential_distance, alt_modificator)
  wrapper for kernel regression with all standard kernel functions, see enum Kernel comments for usage szenarios. performance optimized version using fixed bandwidth and target
  Parameters:
    src (float): input data series
    bandwidth (simple int): sample window of nearest neighbours for the kernel to process
    kernel (simple Kernel): type of Kernel to use for processing, see Kernel enum or respective functions for more details
    exponential_distance (simple bool): if true this puts more emphasis on local / more recent values
    alt_modificator (float): see kernel functions for parameter descriptions. Mostly used to pronounce emphasis on local values or introduce a decay/dampening to the kernel output
MATHstatisticstoolkit

ספריית Pine

ברוח TradingView אמיתית, המחבר פרסם קוד Pine זה כספריית קוד פתוח כדי שמתכנתי Pine אחרים מהקהילה שלנו יוכלו לעשות בו שימוש חוזר. כל הכבוד למחבר! אתה יכול להשתמש בספרייה זו באופן פרטי או בפרסומים אחרים בקוד פתוח, אך שימוש חוזר בקוד זה בפרסום כפוף לכללי הבית.

כתב ויתור